Sexta-feira, 29 de Maio de 2009

Grandes Matemáticos - Leonard Euler

Desde muito cedo  (penso que logo que aprendi a ler) gostei de ler biografias. Não é preciso dizer que nos contam, por vezes, aspectos interessantes da vida das pessoas. Dão-nos, seguramente, uma imagem mais humanizada dos biografados, nomeadamente dos cientistas, à volta dos quais se criam mitos, lendas, que não correspondem à verdade. A biografia de qualquer pessoa que ficou na história pelas mais variadas razões mostra sempre que as ideias feitas nunca correspondem à verdade.

Como já disse gosto muito de biografias e especialmente das de cientistas. Vou tentar periodicamente apresentar, não uma biografia, mas alguns aspectos, que considero importantes do ponto de vista científico, da vida de alguns matemáticos, uns mais, outros menos conhecidos. Vou começar pelo senhor Leonhard Euler.   

                                             

  

Leonhard Euler foi um matemático suiço do século XVIII (1707-1783).

Todos os alunos que fizeram o 2º ciclo ouviram falar deste matemático.

Todos conhecem a Igualdade de Euler, que é apresentada aos alunos do seguinte modo:

  

                 F + V = A + 2, em que as letras significam

 

F - Faces; V - Vértices; A - Arestas

Esta igualdade tem a ver com os sólidos poliedros, que como é sabido são sólidos geométricos limitados apenas por superfícies planas.

Quer então dizer que, em qualquer poliedro, o número de Faces mais o número de Vértices é igual ao número de Arestas mais 2.

Não vamos apresentar nenhum exemplo. Basta pensar, por exemplo, num prisma hexagonal e verificaremos a igualdade.

Mas Euler não ficou famoso apenas por esta igualdade. É apontado como autor de cerca de 800 trabalhos.

A Teoria dos Grafos, que teve um desenvolvimento fundamental no século XX , teve a sua contribuição quando resolveu o célebre problema "As Pontes de Konigsberg", actual Kalalinegrado. Esta cidade da antiga Prússia Oriental é atravessada  pelo rio Pregel que se ramifica formando uma ilha (Kneiphof) que estava ligada à restante parte da cidade por sete pontes. Dizia-se que os habitantes da cidade, nos dias soalheiros de descanso, tentavam efectuar um percurso que os obrigasse a passar por todas as pontes, mas apenas uma vez em cada uma. Como as suas tentativas foram sempre falhadas, muitos deles acreditavam que não existia tal percurso.

 

Leonhard Euler, a pedido do presidente da Câmara da cidade provou que era impossível fazer o passeio passando apenas uma vez por cada uma das pontes. Utilizou para isso um esquema bem simples que hoje tem o nome de grafo. Nascia assim a Teoria dos Grafos.O meu colega e amigo José Filipe  já tratou este assunto num artigo publicado há algum tempo que pode ser lido aqui.

De acordo com as fontes que consultámos, Euler tinha a versatilidade de um génio, uma vez que os seus interesses científicos foram muitos e variados:  professor de Fisiologia  na faculdade de Medicina de São Petersburgo, dedicou-se à astronomia, criou a teoria dos grafos, trabalhou em Cartografia,...

De entre os números reais mais conhecidos, temos de destacar dois que estão associados ao nome de Euler:

 

- O número de Euler (e) tem um valor aproximado de 2,71828. É a base dos logaritmos neperianos e define-se como o limite de (1+1/n)quando n tende para infinito. Onde aparece a ligação de Euler a este número? Segundo a história a existência do número é anterior, sendo também conhecido como constante de Neper, mas foi o matemático suiço o primeiro a utilizar a letra e para identificá-lo e também tem o seu nome como homenagem.

O Número de Euler é um número irracional e também transcendente e apresentamo-lo a seguir com as primeiras 200 casas decimais:

e=2,7182818284590452353602874713526624977572470936999595749669676277240

76630353547594571382178525166427427466391932003059921817413596629043572

90033429526059563073813232862794349076323382988075319525101901.

 

- A constante de Euler-Mascheroni (y) tem o valor aproximado 0,57721 e define-se como sendo limite quando n tende para infinito de (1 + 1/2 + 1/3 + ... + 1/n - log n). Esta constante foi definida pela primeira vez em 1735 por Euler e tem múltiplas aplicações em Teoria dos Números.

 

Poderíamos continuar a falar das realizações do célebre matemático, mas aí vai o nosso desafio que também tem o seu nome:

 

Construir a recta de Euler que se obtem do seguinte modo:

- Construir um triângulo qualquer

- Traçar as suas alturas que vão cruzar-se num ponto que toma o nome de ortocentro. Assinalar esse ponto

- Traçar as suas medianas que vão cruzar-se num ponto que toma o nome de baricentro. Assinalar esse ponto

- Traçar as  mediatrizes dos seus lados que se encontram no ponto que se chama circuncentro. Assinalá-lo.

Verificar que os três pontos estão alinhados, traçando a recta que os contem.

 

Fico à espera dos vossos comentários e sugestões.

 

palavras-chave:
publicado por Frantuco às 21:03
link do artigo | comentar | favorito

.mais sobre mim

.pesquisar

 

.Abril 2011

Dom
Seg
Ter
Qua
Qui
Sex
Sab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

.artigos recentes

. A pérola falsa

. Fazendo humor com a Matem...

. O Problema de Monty Hall

. CABECINHAS PENSADORAS…. f...

. Regressamos sempre às raí...

. Os bilhetes de metro

. Sempre os problemas

. O regresso à memória nova...

. Grandes Matemáticos - Tha...

. O Ano 2010 e as potências...

. O Ano de 2010 e as potênc...

. O Ano de 2010 e as potênc...

. As cidades, as vilas, as ...

. O caderno de exercícios "...

. Os contos das noites de i...

. Mais uma vez o regresso à...

. Grandes Matemáticos - Pit...

. Cereais, legumes, medidas...

. Memórias I

. O Labirinto

. Rãs e Sapos ou Ovelhas e ...

. Rãs e Sapos ou Ovelhas e ...

. HIPÁTIA DE ALEXANDRIA

. A decomposição de números...

. Grandes Matemáticos - Leo...

. Os algoritmos - o número ...

. Os algoritmos - o código ...

. Os caminhos do João

. As probabilidades no dia ...

. As probabilidades no dia ...

. O tempo, os relógios e as...

. As probabilidades e os an...

. Vamos aos gambuzinos

. O jardim de pedra

. De novo as eleições - as ...

. Os frutos secos do Natal

. As caminhadas, as pesagen...

. O Método de Hondt

. O jogo do NIM - segunda v...

. O jogo do NIM - primeira ...

. A travessia da ponte - no...

. Algoritmos - A fórmula de...

. Algoritmos - O teorema de...

. Um problema de idades

. INVERSÕES

. A travessia da ponte

. O carteiro, as idades e o...

. A herança do lavrador

. O relógio, as horas e os ...

. A decomposição de números...

.arquivos

. Abril 2011

. Fevereiro 2011

. Janeiro 2011

. Novembro 2010

. Junho 2010

. Março 2010

. Fevereiro 2010

. Janeiro 2010

. Dezembro 2009

. Novembro 2009

. Outubro 2009

. Agosto 2009

. Julho 2009

. Junho 2009

. Maio 2009

. Abril 2009

. Março 2009

. Fevereiro 2009

. Janeiro 2009

. Dezembro 2008

. Novembro 2008

. Outubro 2008

. Setembro 2008

.palavras-chave

. todas as tags

.links

.Contador

Expedia
Expedia Discount Travel